Syzygies of the Secant Variety of a Curve

نویسندگان

  • JESSICA SIDMAN
  • PETER VERMEIRE
چکیده

We show the secant variety of a linearly normal smooth curve of degree at least 2g + 3 is arithmetically Cohen-Macaulay, and we use this information to study the graded Betti numbers of the secant variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and Syzygies of the First Secant Variety

We show that the secant variety to a smooth variety embedded by a sufficiently positive line bundle satisfies N3,p. For smooth curves, we find the effective bound of degree at least max ̆ 3g + 3 + p, 1 2 (7g + 4 + p) ̄

متن کامل

The Generic Green-lazarsfeld Secant Conjecture

Using lattice theory on specialK3 surfaces, calculations on moduli stacks of pointed curves and Voisin’s proof of Green’s Conjecture on syzygies of canonical curves, we prove the Prym-Green Conjecture on the naturality of the resolution of a general Prym-canonical curve of odd genus, as well as (many cases of) the Green-Lazarsfeld Secant Conjecture on syzygies of non-special line bundles on gen...

متن کامل

Results on Secant Varieties Leading to a Geometric Flip Construction

We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...

متن کامل

Some Results on Secant Varieties Leading to a Geometric Flip Construction

We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...

متن کامل

Progress on Syzygies of Algebraic Curves

These notes discuss recent advances on syzygies on algebraic curves, especially concerning the Green, the Prym-Green and the Green-Lazarsfeld Secant Conjectures. The methods used are largely geometric and variational, with a special emphasis on examples and explicit calculations. The notes are based on series of lectures given in Daejeon (March 2013), Rome (November-December 2015) and Guanajuat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008